Proton transport coupled ATP synthesis by the purified yeast H\(^+\)-ATP synthase in proteoliposomes

Kathrin Förster\(^a\), Paola Turina\(^b\), Friedel Drepper\(^c\), Wolfgang Haehnel\(^c\), Susanne Fischer\(^a\), Peter Gräber\(^a,*\), Jan Petersen\(^a,1\)

\(^a\) Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 23a, D-79104 Freiburg, Germany
\(^b\) Dipartimento di Biologia, Università di Bologna, Via Irnerio 42, I-40126 Bologna, Italy
\(^c\) Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg Schänzlestrasse 1, 79104 Freiburg, Germany

A R T I C L E I N F O

Article history:
Received 16 June 2010
Received in revised form 27 July 2010
Accepted 28 July 2010
Available online 4 August 2010

Keywords:
ATP synthesis
Mitochondrial H\(^+\)-ATP synthase
Km of phosphate
MF0F1
Reconstitution
Saccharomyces cerevisiae

1. Introduction

Membrane-bound H\(^+\)-ATP synthases (H\(^+\)-translocating adenosine triphosphatase EC 3.6.1.14) synthesize ATP from ADP and inorganic phosphate using the energy of a transmembrane electrochemical potential difference of protons \([1–3]\). They occur in the plasma membranes of bacteria, in the thylakoid membrane of chloroplasts and in the inner membrane of mitochondria \([4–8]\). H\(^+\)-ATP synthases consist of a hydrophilic \(F_1\)-part (subunits \(\alpha_{\beta}\gamma\delta\epsilon\) containing the nucleotide and \(P_i\) binding sites and of a hydrophobic membrane integrated \(F_0\)-part containing the proton binding sites (subunits \(\mathrm{ab}_{10-12}\)) (subunit composition and nomenclature of \(E.\) coli). The kinetics of the enzyme is described by the binding change theory which explains the cooperativity of the three catalytic sites by rotation of the \(\gamma\)-subunit within the \(\alpha_{\beta}\)-barrel \([9,10]\). The first high resolution structure of the \(F_1\)-part, from bovine heart mitochondria, corroborated this theory \([11]\). A crystal structure of the holo-enzyme (\(F_0F_1\)) was obtained for the yeast mitochondrial enzyme \([12]\), which revealed a ring structure with 10 \(c\)-subunits and their interaction with the \(\gamma\)-subunit. Anti-clockwise (viewed from the membrane side) rotation of the \(\gamma\)-subunit during ATP hydrolysis was observed in bacterial \(F_1\)-parts \([13]\). Movements of the \(\gamma\)- and \(\varepsilon\)-subunit relative to the \(\sigma\)-subunits during ATP synthesis and opposite movements during ATP hydrolysis have been shown by single pair fluorescence spectroscopy with membrane integrated \(E\varepsilon\varepsilon\varepsilon\) \([14,15]\).

To investigate the mechanism of coupling between proton transport and ATP synthesis H\(^+\)-ATP synthases from bacteria and chloroplasts have been isolated, purified and reconstituted into liposomes. In these reconstituted systems high rates of ATP synthesis (up to 200 s\(^{-1}\)) in response to \(\Delta\varepsilon\) and \(\Delta\varepsilon\) generated in acid–base transitions have been reported – see e.g. \([16–21]\). A tremendous amount of biochemical, structural and functional work has been carried out with the \(F_1\)-part of mitochondrial H\(^+\)-ATP synthases (\(MF_0F_1\)). However, much less is known about the coupling between proton transport and ATP synthesis. ATP synthesis by bovine sub-mitochondrial particles (SMP) driven by acid–base transition was reported \([22]\), and from that work a turnover number in the order of 50 s\(^{-1}\) can be calculated under the assumption that the H\(^+\)-ATP synthase represents 10% of the total protein. Several isolation procedures of mitochondrial \(MF_0F_1\) have been reported and after reconstitution into liposomes functional studies reveal that the

Abstract

The H\(^+\)/ATP synthase from yeast mitochondria, MF\(_0\)F\(_1\), was purified and reconstituted into liposomes prepared from phosphatidylcholine and phosphatidic acid. Analysis by mass spectrometry revealed the presence of all subunits of the yeast enzyme with the exception of the K-subunit. The MF\(_0\)F\(_1\) liposomes were energized by acid–base transitions (\(\Delta\varepsilon\)) and a K\(^+\)/valinomycin diffusion potential (\(\Delta\varphi\)). ATP synthesis was completely abolished by the addition of uncouplers as well as by the inhibitor oligomycin. The rate of ATP synthesis was optimized as a function of various parameters and reached a maximum value (turnover number) of 120 s\(^{-1}\) at a transmembrane pH difference of 3.2 units (at \(pH_{in} = 4.8\) and \(pH_{out} = 8.0\)) and a \(\Delta\varphi\) of 133 mV (Nernst potential). Functional studies showed that the monomeric MF\(_0\)F\(_1\) was fully active in ATP synthesis. The turnover increased in a sigmoidal way with increasing internal and decreasing external proton concentration. The dependence of the turnover on the phosphate concentration and the dependence of \(K_m\) on \(pH_{out}\) indicated that the substrate for ATP synthesis is the monoanionic phosphate species H\(_2\)PO\(_4\)^{−}.

© 2010 Elsevier B.V. All rights reserved.

Abbreviations: \(F_0\), transmembrane sector of the H\(^+\)-ATP synthase; \(F_1\), hydrophilic, extrinsic sector of the H\(^+\)-ATP synthase; \(\varphi\), transmembrane pH difference; \(\Delta\varepsilon\), bulk-to-bulk transmembrane electrical potential difference; \(\Delta\mu_{H^+}\), transmembrane difference of electrochemical potential of protons; \(\varepsilon\), mitochondrial particles; \(PMSF\), phenylmethylsulfonyl fluoride; \(HEPES\), (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid); \(DDM\), dodecylmaltoside; \(BN-PAGE\), Blue Native Polyacrylamide Gel Electrophoresis; \(SDS-PAGE\), Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis; \(Tricine\), N-[2-Hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine

* Corresponding author. Tel.: +49 761 2036192; fax: +49 761 2036180.
E-mail address: peter.graeb@physchem.uni-freiburg.de (P. Gräber).

Present address: Department of Biochemistry & Molecular Biology, Monash University, Clayton, Vic 3800, Australia.

0005-2728/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
enzyme appeared to be able to hydrolyze ATP, to energize the membrane by proton transport, and to catalyze ATP-Pi exchange — see e.g. [23–26]. Detectable ATP synthesis rates were reported, when MF0F1 was co-reconstituted with bacteriorhodopsin with turnover numbers ranging between 10⁻⁴ and 10⁻³ s⁻¹ [23,27,28]. These results contrast with the maximal turnover number of 440 s⁻¹ previously estimated in submitochondrial particles [29]. The reason for the low rates could well have been the low levels of protonotive force achievable with reconstituted bacteriorhodopsin [30]. High proton motive forces can be established by acid–base transitions. However, such studies with reconstituted MF0F1 have not been reported yet.

To obtain high ATP synthesis activities several problems must be solved: 1) The mitochondrial H⁺–ATP synthase is more complex than the corresponding bacterial and chloroplast enzymes. It has 20 different subunits and it is possible that an important subunit is lost either during isolation or during the reconstitution procedure. 2) MF0F1 is able to form supramolecular complexes [31–33] and electron microscopy studies, both of detergent-solubilised MF0F1 complexes and of mitochondrial membranes revealed an angled arrangement of the monomers in dimers, and a ribbon-like organization in higher order oligomers [34–36]. MF0F1 oligomerization imposes a curvature on the inner mitochondrial membrane, and the resulting invaginations have been proposed to act as proton traps improving the efficiency of ATP synthesis [36,37]. However, the functional significance of MF0F1 oligimerization is not yet fully understood, in particular it is not known whether the monomeric form is capable of high activities. 3) The purified MF0F1 detergent micelle must be reconstituted into liposomes in a functionally active form. 4) The optimal conditions for measuring high activities must be established.

In this work MF0F1 was isolated, the subunit composition was determined by mass spectrometry and the monomeric enzyme was reconstituted into liposomes. Acid–base driven ATP synthesis by such monomeric enzyme resulted in rates as high as 120 s⁻¹. Moreover, it is shown that the substrate for ATP synthesis is the monomeric species H2PO₄⁻.

2. Materials and methods

2.1. Cell growth and MF0F1 purification

Saccharomyces cerevisiae cells of the strain YRD15 (MATαhis3-11,13-15 leu2-3,2-112, ura3-251,3-373[ρ⁺]) were grown in well-agarated SACC media [1% (w/v) yeast extract, 0.12% (w/v) (NH₄)₂SO₄, 0.1% (w/v) KH₂PO₄, 0.01% (w/v) CaCl₂, 0.00005% (w/v) FeCl₃, 0.07% (w/v) MgCl₂, 0.05% (w/v) NaCl, 2% (v/v) ethanol] supplemented with 0.1% (w/v) KH₂PO₄, 0.01% (w/v) CaCl₂, 0.0005% (w/v) FeCl₃, 0.07% (w/v) MgCl₂, 0.05% (w/v) NaCl, 2% (v/v) ethanol] stored at 80 °C. A sample of the supernatant was pooled (approx. 20 ml), concentrated in an Amicon Ultra-15 centrifugal filter (molecular weight limit 10 kDa). Gel filtration of the concentrated enzyme was carried out in buffer C1 with a 16/90 Sephacryl 300 column. Fractions containing MF0F1 were pooled (20 ml), concentrated as described above to a protein concentration of 5–10 µM, rapidly frozen and stored in liquid nitrogen. Total yield was approximately 10 mg. The concentration of MF0F1 was measured spectrophotometrically using the absorption coefficient at 280 nm calculated according to [39]. The absorption coefficients of the subunits are shown in Supplementary Table S1. The subunit composition of our MF0F1 preparation was determined by HPLC-electrospray mass spectrometry and, using the subunit stoichiometry reported in [40] (α3β3γ3δ5ε5α4δ8β9γ8ε8) see Supplementary Table S1 for nomenclature. In the following we used the absorption coefficient ε₂₈₀ = 279.300 M⁻¹ cm⁻¹ for all concentration measurements. We assumed that all MF0F1 added to the reconstitution mixture was correctly incorporated into the membrane, which implies that the enzyme activities given in this work are the minimal activities.

2.2. Detection of monomeric and dimeric MF0F1 by Blue Native PAGE

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out as described in [41]. The protein sample was incubated in 20 mM Tris pH 8, 2% (w/v) SDS, 1 mM DTT, 10% (v/v) glycerol and 0.04% bromophenol blue for 10 min at 55 °C and applied to a discontinuous acrylamide gel (13% gel overlayed with 4% sample gel).

Monomeric and dimeric MF0F1 were separated with Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) as described previously [31]. MF0F1 was solubilized with Triton-X 100 to protein ratios between 0.6 and 1.2 g/g protein from the isolated mitochondrial membranes. The solubilised proteins were applied to an acrylamide gradient gel (linear 4–13% gradient, overlayed with a 4% sample gel).

2.3. Protein identification by HPLC–electrospray mass spectrometry

Lanes of a SDS-PAGE (13%) were cut into 38 horizontal 1 mm slices. Each slice was processed individually for establishing abundance profiles of identified peptides. Peptides were modified by iodoacetamide and in-gel digested as described [42]. Peptide mixtures were separated for nano-LC–ESI-MS/MS using a FAMOS Autosampler (Dionex), an Ultimate inverter HPLC (Dionex) and an Agilent HPLC 1100 pump connected to the nano-ESI-Source of a Finnigan LTQ-FT (Thermo Electron) for online mass detection. Peptides were first collected on a trap column (0.1×15 mm, Zorbax Eclipse XDB-C18, 5 µm, Agilent Technology) for desalting and concentrating followed by separation on an analytical column made up by a fused silica emitter (0.075 × 150 mm, 6 µm, Proxene Biosystems) filled with ProC18, 3 µm (YMC). Peptides were eluted using a linear gradient from 97% water, 3% acetonitrile and 0.1% formic acid to 80% acetonitrile, 20% water and 0.1% formic acid within 60 min at a flow rate of 0.15 µl min⁻¹. Mass spectrometric detection consisted of full scans at a resolution of 25000 followed by data dependent selected ion scans at a resolution of 50000 and low resolution MS/MS scans using a dynamic exclusion of parent ion masses for 60 s. The MS and MS/MS spectra were searched against *Saccharomyces cerevisiae* protein sequences deposited at the Uniprot database (release Feb 10, 2009) using an in-house installation of the program OMSSA (version 2.1) [43] as described in [44]. Peptide hits were considered...
significant if the precursor and product ion masses matched within 2 ppm and 0.5 rel. mass units, respectively, and if the E-value was below 0.01. Only the best hit per spectrum was considered. These criteria resulted in a peptide false positive rate of 0.1%. The peptide score was computed from the P-value of the program OMSSA as \(-\log_{10}(P) \). Protein distributions were calculated as the sum of peptide integrated ion currents using the MSQuant program version 1.5 [45] and were used to compute protein distribution profiles [46]. For low intensity peptides which were not selected for data dependent MS/MS scans ion currents were manually integrated at a given mass over charge ratio using the Xcalibur Software (Thermo Electron). The latter method was used for subunit g.

2.4. Reconstitution of MF0F1 into liposomes

The reconstitution of MF0F1 into liposomes was carried out similarly as described in [47]. Preformed liposomes from phosphatidylcholine and phosphatidic acid (mass ratio 19:1) were prepared by sonication (3 × 30 s in a Branson Sonifier 250, Output level 4, Duty Cycle 90%) and by dialysis against buffer D1 (10 mM Tricine, 0.2 mM EDTA, 2.5 mM MgCl2 and 0.25 mM dithiothreitol, titrated to pH 8.0 with NaOH). The lipid concentration after dialysis was 16 g/l. The liposomes were rapidly frozen and stored in liquid nitrogen. The size distribution of the liposomes was determined by photon correlation spectroscopy using a Zetamaster S/90° ZEN 5002, Malver Instruments. For reconstitution of MF0F1, 150 μl liposomes were thawed and MF0F1 (6 μl, 7.5 μM in buffer C1), MgCl2 (final concentration 2.5 mM), Triton X-100 (24 μl, final concentration 0.8% (w/v)) and 119 μl buffer E1 (20 mM succinate, 20 mM Tricine, 60 mM NaCl, 0.6 mM KCl, titrated to pH 8.0 with NaOH) were added. The reconstitution mixture was stirred slowly at room temperature for 1 h. Addition of BioBeads (35 mg per 100 μl of the protein/lipid/detergent solution) led to the removal of Triton X-100 and the insertion of MF0F1 into the liposome membrane [48]. In the end, the lipid concentration of the proteoliposomes was approximately 8 g/l with a MF0F1 concentration of 150 nM.

2.5. Measurement of ATP synthesis

The rate of ATP synthesis was measured at 25 °C similar as described earlier [17]. The proteoliposomes were energized by an acid–base transition and an additional K+/valinomycin diffusion potential. The ATP concentration was monitored continuously with luciferin/luciferase (Roche) in a luminometer (LKB 1250). In order to generate the ΔpH, the proteoliposomes were incubated in the acidic medium (Fig. 1). To generate different ΔpH during the acid–base transition the acidic medium was titrated with NaOH to pH values between 4.7 and 6.7. The pH of the basic medium was constant: 250 mM Tricine, 120 mM KOH, 0.1–15 mM NaH2PO4, 0.4 mM ADP, 20 μM valinomycin (freshly added)). To generate different ΔpH during the acid–base transition the acidic medium was titrated with NaOH to pH values between 4.7 and 6.7. The pH of the basic medium was constant: 250 mM Tricine, 120 mM KOH, 0.1–15 mM NaH2PO4, 0.4 mM ADP, titrated to pH 8.0 with NaOH.

ATP synthesis and detection of ATP with the luciferin/luciferase assay were carried out simultaneously as follows: 880 μl of the basic medium were mixed with 20 μl luciferin/luciferase reagent, placed in the luminometer and the base line was recorded. Proteoliposomes (15 μl, MF0F1 concentration 150 nM) were mixed with 100 μl acidic medium. The incubation time was varied between 2 min at \(pH_{in} = 4.8 \) and 30 min at \(pH_{in} = 6.8 \) at 25 °C. ATP synthesis was initiated by injection of 100 μl of this solution with a Hamilton syringe directly into the basic medium. Supplementary Table S2, supplement shows the resulting concentrations inside and outside the proteoliposomes after the acid–base transition during ATP synthesis. The increase of the ATP concentration was followed by the luminescence intensity. When the signal reached a constant level, it was calibrated by addition of an ATP standard solution. The internal pH was assumed to be equal to the pH measured after equilibration of 100 μl of the acidic medium with 15 μl of the proteoliposomes. The pH of the strongly buffered basic medium did not change after addition of the acidified liposomes, i.e. the \(pH_{eq} \) value was always 8.0. In addition to the transmembrane pH-difference a K+/valinomycin diffusion potential was generated. The internal K+ concentration was 0.6 mM, the external K+ concentration was 106 mM. The transmembrane electric potential difference was estimated from the Nernst equation as 133 mV.

The luminescence time traces were fitted by a combination of an exponential and a linear function using the software package Origin. The initial rates were calculated from the fitted function. All given values are the arithmetic mean of triplicate measurements with the standard deviation.

3. Results

3.1. Subunit composition and oligomeric state of the isolated MF0F1

MF0F1 was isolated from yeast cells and purified as described in Materials and methods. Fig. 1A shows the results of the SDS-PAGE after the final purification step. The subunits were identified by mass spectrometric analysis and named according to the nomenclature of the Uniprot database. A comparison with earlier nomenclature is given in Supplementary Table S1. The oligomeric state of the isolated MF0F1 was analysed using blue native gel electrophoresis. Purified MF0F1 and for comparison MF0F1 solubilised from mitochondrial membranes with increasing ratios of Triton X-100 to protein were separated by BN-PAGE (Fig. 1B). At low Triton X-100 concentrations (lanes II and III) two dominant complexes were found, which were previously identified as monomeric and dimeric MF0F1 with the approximate molecular masses of 500 and 1000 kDa respectively [31,49]. At the highest Triton X-100 concentration (lane IV) the band attributed to the dimeric MF0F1 had disappeared, as reported previously [31]. Densitometric analysis of the gel revealed approx. 60% of the dimeric form in lane II. The DDM solubilised, purified enzyme (lane I) showed less than 1% of the dimeric form. We conclude that our purified MF0F1 only contains the monomeric form.

3.2. Subunit composition by HPLC-electrospray mass spectrometry

The SDS-PAGE gel of MF0F1 was analysed by HPLC–electrospray mass spectrometry as described in Materials and methods. Fig. 2A shows the analysed lane and its optical density profile. The distribution profiles for the MF0F1 subunits are given in Fig. 2 B–D, and show that the preparation contained all subunits except subunit K. Most of the subunits have been identified with sequence coverage above 60% as summarised in Table 1. Subunits 8, a, g and 9 have been detected with a lower sequence coverage which could be due to the hydrophobic nature of protein subunits 8, a and 9 and the lysine-rich sequence of subunit g. Subunit 9 was found in our SDS-PAGE at a molecular weight of 84 kDa (see Table 1 and Fig. 1), indicating that it was present as an oligomer as described earlier [31,50]. Surprisingly, and at variance with what has been found in previous preparations of yeast MF0F1 [12,51], the dimer-specific e- and g-subunits were also detected. Subunit g was identified with one peptide at the apparent molecular weight of 21.7 kDa (Table 1 and Fig. 2B, grey solid line). This is about twice as much as the calculated molecular weight of the mature protein, and also twice the apparent molecular weight reported previously [31,52]. Inspection of the HPLC–MS ion chromatograms showed that the mass of the identified peptide ion was also present at approximately 11 kDa, however at a lower intensity (Fig. 2, grey dashed line). Therefore, it appears that subunit g is present both as a dimer, as found in rat MF0F1 [53], and as a monomer.

Due to its high sensitivity, the mass spectrometric analysis allowed to detect also subunits of MF0F1 which were not visible in the Coomassie stained SDS-gel, either due to poor staining, or to co-migration in a single band (see e.g. subunit e, and 8 in Fig. 2). In addition to the MF0F1...
subunits, we also identified a number of peptides from other mitochondrial proteins, which were neither visible in the Coomassie nor in the silver stained SDS-gel (Fig. 1).

3.3. ATP synthesis by acid–base transitions

After reconstitution of MF₀F₁ in phosphatidylcholine/phosphatidic acid liposomes, acid–base transitions were carried out and ATP synthesis was measured as described in Materials and methods. Fig. 3 shows some original traces from these experiments. Fig. 3A was obtained at an internal pH of 5.0 and an external pH of 8.0 (Δφᵢ = 133 mV). The baseline resulted from the ATP content of the commercial ADP present in the basic medium. The acidified proteoliposomes were injected at time t = 0 (indicated by the arrow). The injection resulted in a small mixing artefact, followed by an increase in luminescence due to ATP synthesis. The rate of luminescence increase was highest at t = 0, decreasing to zero after approximately 15 s. This decrease of the rate is due to the decay of the transmembrane protonmotive force after the acid–base transition. The initial rate, i.e. the slope at t = 0, was ν = 175 nM s⁻¹ (see Fig. 3A). By taking into account the MF₀F₁ concentration in the reaction assay (2.0 nM), this gives a turnover value of ν/E₀ = 88 s⁻¹.

The total amount of ATP generated in the acid–base transition (ATP yield) is also shown (ΔATP_total = 175 ATP per MF₀F₁). When the transmembrane ΔpHᵢ was abolished by addition of 50 mM NH₄Cl to the basic medium, no ATP synthesis could be detected (Fig. 3B). When 10 μg/ml oligomycin, which blocks proton flow by binding to MF₀F₁, was added to the acidic and the basic medium, again no ATP synthesis could be observed (Fig. 3C).

3.4. Catalytically active MF₀F₁ — monomer or dimer?

As shown in Fig. 1B, the purified MF₀F₁ was obtained in its monomeric form. During reconstitution of MF₀F₁ into preformed liposomes, detergent is added to destabilize the bilayer membrane and the hydrophobic parts of the MF₀F₁ micelles interact with the liposome membrane. Removal of the detergent by BioBeads leads to an integration of the enzyme into the membrane with the hydrophilic F₁-part directed to the outside [48,54]. If more than one MF₀F₁ is inserted into the membrane of a single liposome, the formation of dimers is possible, even if only monomers were present at the beginning of the reconstitution procedure. The average number of MF₀F₁ per liposome can be estimated as follows. As determined by photon correlation spectroscopy [55], the average diameter of the proteoliposomes is 150 nm. Assuming that the thickness of the membrane is 8 nm (sum of the inner (ri) and outer (ro) surface, O = 4π(ri² + ro²) / 3 = 4π(67² + 75²) nm² = 1.3 10⁶ nm²), a surface area of 1.3 10⁶ nm² is obtained. The average area of a lipid molecule is 0.6 nm² [56], i.e. an average liposome contains 2.2 10⁴ lipid molecules. The lipid concentration during reconstitution was 8 mg/ml or 10.5 mM (calculated with an average molecular mass of the lipids of 760 g/mol) which corresponds to a liposome concentration of 48 nM.
The MF0F1 concentration during reconstitution was 150 nM. Assuming that all enzymes are reconstituted into the membrane, each liposome would contain on average 3 MF0F1. Based on these considerations, a dimerisation of MF0F1 in the membrane was possible under our conditions and, therefore, the rate shown in Fig. 3 might be due to both monomeric and dimeric enzymes.

To resolve this ambiguity, the MF0F1 concentration during reconstitution was varied from 0.1 to 10 MF0F1 per liposome, and the initial rate of ATP synthesis per MF0F1 was measured. While a significant dimerisation is unlikely in the range between 0.1 and 1 MF0F1 per liposome, it could occur in principle in the case of more than 1 MF0F1 are reconstituted per liposome. However, as shown in Fig. 4A, the turnover (rate per enzyme) did not depend on the number of MF0F1 per liposome in the whole range between 0.1 and 10 MF0F1 per liposome. In addition to the rate, the total amount of ATP per MF0F1 (ATP yield) generated in the acid–base transition \((\Delta \text{ATP}_{\text{total}})\) was measured. It was constant in the range between 0.1 and 1 MF0F1 per liposome and decreased at higher ratios (Fig. 4B). Whereas the initial rate (turnover) depends only on \(p\text{H}_{\text{out}}, p\text{H}_{\text{in}}, \Delta \varphi\) and the substrate concentrations the ATP yield depends, additionally, on the

Table 1

<table>
<thead>
<tr>
<th>Subunit</th>
<th>Protein ID</th>
<th>Slice</th>
<th>Gel MW (^a) (kDa)</th>
<th>MW (^c) (kDa)</th>
<th>Number of amino acids</th>
<th>Coverage (^d) %</th>
<th>Max. intensity (^e)</th>
<th>Number of peptides (^f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>P00856</td>
<td>8</td>
<td>7.1</td>
<td>5.8</td>
<td>48</td>
<td>22.9</td>
<td>4.2E+04</td>
<td>2</td>
</tr>
<tr>
<td>epsilon</td>
<td>P21306</td>
<td>8</td>
<td>7.1</td>
<td>6.6</td>
<td>61</td>
<td>93.4</td>
<td>6.3E+07</td>
<td>32</td>
</tr>
<tr>
<td>j</td>
<td>P81459</td>
<td>11</td>
<td>9.7</td>
<td>10.6</td>
<td>95</td>
<td>94.9</td>
<td>8.6E+06</td>
<td>19</td>
</tr>
<tr>
<td>f</td>
<td>Q06465</td>
<td>11</td>
<td>9.7</td>
<td>10.6</td>
<td>95</td>
<td>62.1</td>
<td>1.5E+07</td>
<td>21</td>
</tr>
<tr>
<td>e</td>
<td>P81449</td>
<td>11</td>
<td>9.7</td>
<td>10.6</td>
<td>95</td>
<td>72.6</td>
<td>8.0E+06</td>
<td>19</td>
</tr>
<tr>
<td>H</td>
<td>Q12349</td>
<td>14</td>
<td>13</td>
<td>10.4</td>
<td>92</td>
<td>100</td>
<td>5.9E+06</td>
<td>39</td>
</tr>
<tr>
<td>delta</td>
<td>Q12165</td>
<td>15</td>
<td>14.2</td>
<td>14.6</td>
<td>138</td>
<td>91.3</td>
<td>3.4E+07</td>
<td>54</td>
</tr>
<tr>
<td>d</td>
<td>P09902</td>
<td>19</td>
<td>20</td>
<td>19.7</td>
<td>173</td>
<td>91.3</td>
<td>2.8E+08</td>
<td>68</td>
</tr>
<tr>
<td>s</td>
<td>P00854</td>
<td>20</td>
<td>21.7</td>
<td>20.9</td>
<td>195</td>
<td>93.3</td>
<td>1.8E+08</td>
<td>59</td>
</tr>
<tr>
<td>a</td>
<td>P00854</td>
<td>20</td>
<td>21.7</td>
<td>27.9</td>
<td>249</td>
<td>17.7</td>
<td>3.8E+06</td>
<td>9</td>
</tr>
<tr>
<td>g</td>
<td>Q12233</td>
<td>20</td>
<td>21.7</td>
<td>12.9</td>
<td>115</td>
<td>9.6</td>
<td>3.9E+04</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Q6B1V4 (^g)</td>
<td>21</td>
<td>23.6</td>
<td>23.2</td>
<td>209</td>
<td>80.9</td>
<td>2.4E+08</td>
<td>64</td>
</tr>
<tr>
<td>gamma</td>
<td>P38077</td>
<td>26</td>
<td>35</td>
<td>30.6</td>
<td>278</td>
<td>87.8</td>
<td>2.1E+08</td>
<td>61</td>
</tr>
<tr>
<td>beta</td>
<td>P00830</td>
<td>30</td>
<td>47.8</td>
<td>51.1</td>
<td>478</td>
<td>89.5</td>
<td>1.7E+08</td>
<td>66</td>
</tr>
<tr>
<td>alpha</td>
<td>P07251</td>
<td>33</td>
<td>60.6</td>
<td>54.9</td>
<td>510</td>
<td>84.1</td>
<td>2.1E+08</td>
<td>71</td>
</tr>
<tr>
<td>9</td>
<td>P61829</td>
<td>37</td>
<td>83.8</td>
<td>7.8</td>
<td>76</td>
<td>40.8</td>
<td>3.7E+04</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^a\) Identifier from Uniprot database.
\(^b\) Molecular weight for gel slice as determined by extrapolation.
\(^c\) Calculated molecular weight of mature protein.
\(^d\) Sequence coverage of total sequence by peptides detected.
\(^e\) Maximum intensity (sum of peptide integrated ion currents).
\(^f\) Number of non-redundant peptides detected.
\(^g\) Q6B1V4 differs from swissprot id P05626 at positions Leu11 (Ala in P05626), which is within the transit sequence, and Ala171 (Arg in P05626) which has been identified (data not shown).
internal buffer capacity of the liposomes, i.e. on the amount of protons stored inside. After the acid–base transition, the protons stored in the inner aqueous phase flow back to the external phase via a basal proton flux (through the membrane) and a phosphorylation coupled proton flux (through MF\(_{0}\)F\(_{1}\)). If more than one MF\(_{0}\)F\(_{1}\) is present in the membrane, the phosphorylation coupled proton flux is distributed between two or more enzymes, which decreases the number of protons available for each enzyme, and, accordingly, the ATP yield (amount of ATP synthesized per MF\(_{0}\)F\(_{1}\)). Therefore, the observed yield of the reduction indicates that, at stoichiometric ratios higher than 1 MF\(_{0}\)F\(_{1}\) per liposome in the reconstitution medium, more than one enzyme was reconstituted per liposome.

Comparing the ATP synthesis rate and the ATP yield as a function of MF\(_{0}\)F\(_{1}\) concentration, we conclude that monomeric MF\(_{0}\)F\(_{1}\) catalyzes high rates of proton transport driven ATP synthesis and that dimerisation, if it occurs, does not influence the ATP synthesis.

3.5. Optimization of reaction conditions for ATP synthesis

To obtain high rates of ATP synthesis, the reaction conditions of the acid–base transition have been optimized with respect to \(pH_{in}\) and \(pH_{out}\). The electric potential difference \(\Delta \varphi = 133 \text{ mV}\) as well as the substrate concentrations were kept constant ([Pi]=5 mM, [ADP]=0.4 mM). The incubation time of the proteoliposomes in the acidic medium was varied and the time chosen for further measurements was the time at which the rate showed no further increase with increasing incubation time. The incubation times were 30 min for 6.5<\(pH_{in}\)<6.8, 10 min for 6.2<\(pH_{in}\)<6.4, and 2 min for 4.8<\(pH_{in}\)<6.0. The longer incubation time needed at the highest \(pH_{in}\) was expected due to the lower concentration of the most permeant neutral and monoanionic forms of succinate. The dependence of the rate of ATP synthesis on \(pH_{in}\) at \(pH_{out}=8.0\) is shown in Fig. 5A. The rate shows a sigmoidal dependence on \(pH_{in}\) reaching a maximal rate of 80 s\(^{-1}\) at \(pH_{in}=5.0\). Incubation in the acidic medium might lead to an inactivation of the enzyme, especially at the highest proton concentrations. A small inactivation was observed only at the highest proton concentration (\(pH_{in}=4.8\)). This rate is shown by the open square in Fig. 5A. The inactivation has been corrected by comparing the rates at \(pH_{in}=5.2\) with and without preincubation at \(pH_{in}=4.8\), as described in Fig. S1 [57]. This correction increased the rate slightly (full square at \(pH_{in}=4.8\)). The observation of a maximal rate indicates that the enzyme has reached a fully protonated state, so that an increase of the proton concentration did not lead to a further increase of the rate.

The dependence of the rate of ATP synthesis on \(pH_{out}\) at constant \(pH_{in}=5.2\) is shown in Fig. 5B. With increasing \(pH_{out}\) the rate reached a maximum at \(pH_{out}=7.7\) followed by a decrease. The increase in the rate with decreasing proton concentration outside indicates that at \(pH_{out}=7.2\), the proton release from the enzyme to the outside is rate limiting and that this step is facilitated at low outside proton concentrations. However, the decrease of the rate at \(pH_{out}>8.0\) was unexpected and cannot be explained by deprotonation of the enzyme. One possibility for this effect might be a limited supply of a substrate.

In the measurements shown in Fig. 5A and B, the total phosphate concentration was kept constant, however, the relative concentration of the different phosphate species depended on the \(pH_{out}\), and the observed decrease in the rate might be due to a limiting concentration of the phosphate species binding to the enzyme. This consideration prompted us to investigate the phosphate dependence of the rate in detail.

3.6. The phosphate species involved in ATP synthesis

The \(pH_{out}\) determines the protonation state of substrates and products. It is still an open question which protonation state of phosphate binds to MF\(_{0}\)F\(_{1}\) during ATP synthesis. Therefore, the rate of ATP synthesis was measured as a function of the phosphate concentration at different \(pH_{out}\). In Fig. 6A the relative rates of ATP synthesis are shown as a function of the total \(P_i\) concentration at different \(pH_{out}\) between 7.2 and 8.6. At each \(pH_{out}\) the rate could be described by Michaelis–Menten kinetics:

\[
\frac{v}{v_{\text{max}}} = \frac{[P_i]_{\text{total}}}{K_M + [P_i]_{\text{total}}} = \frac{k_{cat} + k_{-1}}{k_1}
\]

where \(K_M\) is the Michaelis–Menten constant referring to the total \(P_i\) concentration and \(v_{\text{max}} = k_{cat}[E_O]\) is the maximal rate. The solid lines in Fig. 6A were calculated from Eq. (1), and the parameters \(v_{\text{max}}\) and \(K_M\) were obtained from nonlinear regression analysis. The \(K_M\) values increased from 0.4 mM at \(pH_{out}=7.2\) to 6 mM at \(pH_{out}=8.6\) (see Fig. 6B). The maximal rates increased with \(pH_{out}\) from 60 s\(^{-1}\) at \(pH_{out}=7.0\) to 120 s\(^{-1}\) at \(pH_{out}=8.6\) (see Fig. 7A). If the enzyme accepts only one protonation state of phosphate as substrate in ATP synthesis, the relevant parameter in kinetics is the concentration of this species, and not the total phosphate concentration. Therefore, the data was analysed as follows: \(P_i\) forms three ionic species in aqueous solution and the fraction of each species can be calculated from the dissociation constants of the three protonation states (\(K_1\), \(K_2\), \(K_3\)). The dissociation constants are corrected for the ionic strength of the reaction medium (1=0.14 M) as described in [58] resulting in \(pK_1=1.83\), \(pK_2=6.89\) and \(pK_4=12.07\). For details see Supplementary Table S3.

Using these \(pK\)-values, the fraction of the monoanionic species \(H_2PO_4^-\) is calculated from Eq. (2) and shown as function of \(pH_{out}\) in Fig. 6B.

\[
\alpha = \frac{[H_2PO_4^-]}{[P_i]_{\text{total}}} = \frac{k_1[H^+]^2 + K_1[H^+] + K_2K_3}{K_1[H^+] + K_3K_4}
\]
For an appropriate description of the kinetics, the total \(P_i \) concentration in Eq. (1) was substituted by the \(H_2PO_4^- \) concentration.

\[
v = \frac{v_{\text{max}} [P_i(\text{total})]^\alpha}{K_M + [P_i(\text{total})]^\alpha} = \frac{[H_2PO_4^-]}{K_M(H_2PO_4^-) + [H_2PO_4^-]}\]

(3)

In this equation \(K_M\alpha \) is identical with the \(K_M \) for the species \(H_2PO_4^- \), i.e. \(K_M\alpha = K_M(H_2PO_4^-) \). The \(K_M(H_2PO_4^-) \) has been calculated from the data in Fig. 6A and plotted in Fig. 7B. \(K_M(H_2PO_4^-) \) did not depend on \(pH_{\text{out}} \) and the \(K_M \) value for this species is \(K_M(H_2PO_4^-) = (120 \pm 20) \mu M \).

The \(H_2PO_4^- \) concentrations were then calculated from Eq. (2) for all data shown in Fig. 6A and such data were replotted in Fig. 8 as a function of the \(H_2PO_4^- \) concentration. From this result we conclude that the substrate of MF0F1 in ATP synthesis is the monoanionic species \(H_2PO_4^- \). The rate constant for \(H_2PO_4^- \) binding, \(k_1 \), can be estimated from the Michaelis–Menten kinetics under the conditions \([S] \ll K_M \) and \(k_{\text{cat}} \gg k_{-1} \).

\[
v = \frac{v_{\text{max}}[S]}{K_M + [S]} \approx \frac{v_{\text{max}}}{K_M} \approx k_1 [S]
\]

(4)

A plot of \(\frac{v_{\text{max}}}{[S]} \) as a function of \(pH_{\text{out}} \) is shown in Fig. 7C. A rate constant of \(1.1 \times 10^6 M^{-1} s^{-1} \) is obtained at \(pH_{\text{out}} = 8.0 \), below \(pH_{\text{out}} = 8.0 \), the rate constant decreases, since the \(\Delta pH \) is too low to obtain the maximal rate. This indicates that the minimal rate constant for \(H_2PO_4^- \) binding is \(k_1 = 1.1 \times 10^6 M^{-1} s^{-1} \). Based on this value, the rate constant \(k_{-1} \) for \(P_i \) dissociation, and the dissociation constant \(K_D \) can be calculated from the definition of \(K_M \) and from the value of \(k_{\text{cat}}(k_{\text{cat}} = \frac{v_{\text{max}}}{[E_0]} = 120 s^{-1}) \), resulting in \(k_{-1} = 12 s^{-1} \) and \(K_D = \frac{k_{-1}}{k_1} \approx 11 \mu M \), respectively.

4. Discussion

In this work, procedures are described to purify MF0F1 from yeast, to reconstitute it into liposomes and to measure high ATP synthesis activities. The turnover number (up to 120 s\(^{-1}\)) is in the same order of magnitude as that of bovine MF0F1 in SMP (50 s\(^{-1}\)) and of the...
maximal turnover (440 s\(^{-1}\)), as estimated in [29], indicating that such isolation and reconstitution procedures largely preserve the native functional state of the enzyme. Since it is assumed that all MF\(_{0}\)F\(_{1}\) added to the reconstitution mixture is inserted correctly into the liposome membrane and that all MF\(_{0}\)F\(_{1}\) is active in ATP synthesis, this rate is the minimal turnover of our preparation. Although several isolation and (co-)reconstitution procedures have been reported, this is the first time a rate of ATP synthesis close to the estimated physiological value has been observed for the purified mitochondrial enzyme. Several reasons might be relevant for this high activity.

4.1. Subunit composition

The isolation procedure described here is similar to that reported in [12], and virtually the same band patterns were obtained by SDS-PAGE. Mass spectrometric analysis of the gel revealed that our preparation contained all subunits described previously [49,51] except for the K subunit [49]. Previous reports [12,31,51] had suggested that the contained all subunits described previously [49,51]

Mass spectrometric analysis of the gel revealed that our preparation was reconstituted by Biobeads. If more than one enzyme is reconstituted into detergent micelles interact in solution and form a dimer before the monomeric MF\(_{0}\)F\(_{1}\)-detergent micelle lead to a Poisson distribution of the number of MF\(_{0}\)F\(_{1}\) per liposome. However, there is a remote possibility, that at low Triton X-100 concentrations two MF\(_{0}\)F\(_{1}\)-detergent micelles interact in solution and form a dimer before the monomeric MF\(_{0}\)F\(_{1}\)-detergent micelle interacts with the liposome. From statistical reason this is unlikely, however we cannot completely exclude this possibility.

4.2. Monomeric and dimeric MF\(_{0}\)F\(_{1}\)

In recent years, evidence has been accumulating that MF\(_{0}\)F\(_{1}\) is found in native membranes as dimers and even as oligomers (see [40] and references therein). The dimer–specific subunits (e, g and K) are not found at the dimer interface and play a role in dimer stabilization and mitochondrial morphology. A still largely unexplored issue has been whether the monomeric and the multimeric forms are equally competent for catalysis or not. It may be possible that failure to detect high ATP synthesis rates in reconstituted systems was due the fact that the monomeric enzymes were isolated. A higher efficiency of the multimeric forms in vivo has been suggested due to their ability to give rise to inner mitochondrial membrane invaginations, which might be able to sustain a more elevated local protonmotive force [36,37]. As shown by the BN-PAGE analysis of Fig. 1B, the purified enzyme contained only the monomeric form, but it was not possible to exclude that dimerisation took place during the reconstitution procedure, in which the added detergent (Triton X-100) was slowly removed by Biobeads. If more than one enzyme is reconstituted into the same liposome, dimers could be formed. However, the combined measurement of the ATP yield and of the initial rate as a function of the average number of MF\(_{0}\)F\(_{1}\) per liposome from 0.1 to 10 shows that the high activity is due to the monomeric form or that, if dimerisation does take place, it does not influence the activity (see Fig. 4).

For reconstitution the monomeric MF\(_{0}\)F\(_{1}\)-DDM-micelles and Triton X-100 are added to the liposomes and the detergents are slowly removed. We assume that the interaction between liposome and monomeric MF\(_{0}\)F\(_{1}\)-detergent micelle lead to a Poisson distribution of the number of MF\(_{0}\)F\(_{1}\) per liposome. However, there is a remote possibility, that at low Triton X-100 concentrations two MF\(_{0}\)F\(_{1}\)-detergent micelles interact in solution and form a dimer before the monomeric MF\(_{0}\)F\(_{1}\)-detergent micelle interacts with the liposome. From statistical reason this is unlikely, however we cannot completely exclude this possibility.

4.3. Reconstitution

For reconstitution of membrane proteins into liposome membranes a number of different procedures have been developed. In our experience two-step procedures with H\(^+\)-ATP synthases give higher yields and enzyme activities than one-step procedures [48,54]. In the first step liposomes are formed and in the second step the protein is integrated into the membrane. This allows to use any procedure (dialysis, reverse phase, etc.) for generation of liposomes with an appropriate lipid composition, size distribution etc. without paying special attention to conditions necessary to preserve high enzyme activities. In the second step the liposome membrane is destabilized by addition of an appropriate detergent. The protein-detergent micelles are added and, following their adsorption at the membrane, the protein is integrated. Since it is energetically difficult for the hydrophobic F\(_{1}\)-part to cross the membrane, the insertion is unidirectional, with the large hydrophilic part directed to the outside. Finally, the proteoliposomes with the correctly inserted protein are stabilized by removal of the detergent either by adsorption to BioBeads or by dialysis. After optimisation of the parameters for reconstitution we adopted the procedure described in Materials and methods.

4.4. Reaction conditions for acid–base driven ATP synthesis

The proton motive force (\(\Delta \mu_H^+\)) necessary for ATP synthesis was generated by an acid–base transition and therefore, the initial reaction conditions are well known. In mitochondria, the electric component \(\Delta \phi\) of the protonmotive force is larger than the chemical component \(\Delta pH\). To obtain high rates, \(\Delta \phi\) was generated by a large K\(^+\) concentration difference ([K\(^+\)]\(_{in}\) = 0.6 mM, [K\(^+\)]\(_{out}\) = 110 mM in the presence of valinomycin. The permeability coefficient of K\(^+\)/valinomycin complex is large compared to those of the other ions, so that the diffusion potential (\(\Delta \phi = 133 mV\)) calculated by the Nernst equation is close to the actual value. An internal K\(^+\) concentration lower than 0.6 mM would not lead to a higher \(\Delta \phi\), since the initial influx of a few K\(^+\) ions compensating the electric membrane capacity would bring the actual internal K\(^+\) concentration to the range of few hundred of mM. Also higher external K\(^+\) concentrations would not increase the actual value of \(\Delta \phi\), since at higher [K\(^+\)]\(_{in}\)/[K\(^+\)]\(_{out}\) ratios the membrane is not strictly semipermeable and compensating fluxes of other ions would decrease the diffusion potential.

At \(pH_{out} = 8.0\), the rate depended in a sigmoidal way on \(pH_{in}\), with a maximal value of 85 s\(^{-1}\) reached at \(pH_{in} = 5.0\). This dependency reflects the protonation of the enzyme from the inside. Incubation at \(pH < 5.0\) might lead to an irreversible denaturation of a fraction of the enzyme and a method is described for correction of this denaturation (see Supplementary Fig. S1). When the constant total phosphate concentration was considered, the dependency of the rate on \(pH_{out}\) showed a maximum at \(pH_{out} = 7.8\) (Fig. 5A). This indicates the superposition of two opposing effects on the rate. A detailed analysis of the \(pH_{out}\) dependency of the Michaelis Menten parameters for phosphate, which took into account the different protonation states of the substrate, was consistent with the hypothesis that the bell-shaped dependency of the rate on \(pH_{in}\), observed in Fig. 5B resulted from the superposition of an increase due to the deprotonation of the enzyme at the outside and of a decrease of the substrate \(H_2PO_4^-\) concentration with increasing \(pH_{out}\). After correcting for such decrease, the maximal rate \(v_{max}\) reflected only the deprotonation of the enzyme to the outside, and increased correspondingly in a continuous manner, reaching a maximal rate at \(pH_{out} = 8.6\) (Fig. 7A).

4.5. Phosphate as substrate in ATP synthesis

The rate of ATP synthesis as a function of the total phosphate concentration can be described by Michaelis–Menten kinetics and both KM and as \(v_{max}\) depend on \(pH_{out}\). When the concentration of \(H_2PO_4^-\) is calculated at different \(pH_{out}\) values and the rates are plotted as function of \(H_2PO_4^-\) concentration, the phosphate dependencies obtained at different \(pH_{out}\) can be described by a single Michaelis–Menten kinetics with \(K_M(H_2PO_4^-) = 120 \mu M\) and \(v_{max} = 120 s^{-1}\) (see...
Protonation state cannot be seen in the crystal structure. However, K. Förster et al. / Biochimica et Biophysica Acta 1797 (2010) 1828
We show here that monoanionic H₂PO₄⁻ binding to F₁-subunits starts with ATP binding (defined as angle 0°) followed by a 40°-step. Phosphate is then released during a 40°-step leading to the final 120°-position. A detailed kinetic analysis of these single molecule data showed that the phosphate affinity differs by orders of magnitude according to the angle. The subunit is at the 80°-position (K₀₈₀ = 4.9 M) or at the 120°-position (K₀₁₂₀ = 70–200 M). The step constant for phosphate binding at 80° was k₁₈₀ = 1.7 × 10⁵ M⁻¹ s⁻¹. During proton transport coupled γ-rotation, the direction of rotation is reversed [14], and correspondingly, the step from 120° to 80° increases the phosphate affinity when the enzyme is energized. On the basis of these results, an inhibition of ATP hydrolysis by phosphate is expected, surprisingly, however, no inhibition could be detected during steady state ATP hydrolysis [68,69]. When, however, EF₅F₁ proteoliposomes, which are highly active in ATP synthase, were used for measurements of the initial rate of proton transport coupled ATP hydrolysis, it was observed that this rate was inhibited by phosphate [70]. The half maximal inhibition occurred at 0.5 mM total phosphate which corresponds to 38 μM H₂PO₄⁻.
Recent results gave a first approach to understand these contradictions [71]. According to single molecule observations with immobilised T₅₁₆₅-subunits, rotation of the γ-subunit starts with ATP binding (defined as angle 0°) followed by a 80°-step. Phosphate is then released during a 40°-step leading to the final 120°-position. A detailed kinetic analysis of these single molecule data showed that the phosphate affinity differs by orders of magnitude according to the angle. The subunit is at the 80°-position (K₀₈₀ = 4.9 M) or at the 120°-position (K₀₁₂₀ = 70–200 M). The step constant for phosphate binding at 80° was k₁₈₀ = 1.7 × 10⁵ M⁻¹ s⁻¹. During proton transport coupled γ-rotation, the direction of rotation is reversed [14], and correspondingly, the step from 120° to 80° increases the phosphate affinity when the enzyme is energized. On the basis of these results, an inhibition of ATP hydrolysis by phosphate is expected, surprisingly, however, no inhibition could be detected during steady state ATP hydrolysis [68,69]. When, however, EF₅F₁ proteoliposomes, which are highly active in ATP synthase, were used for measurements of the initial rate of proton transport coupled ATP hydrolysis, it was observed that this rate was inhibited by phosphate [70]. The half maximal inhibition occurred at 0.5 mM total phosphate which corresponds to 38 μM H₂PO₄⁻.
References

Acknowledgments
Support from DFG to Wolfgang Haehnel (Ha1084/9) is gratefully acknowledged.
J. L. Rigaud, M. T. Paternostre, A. Bluzat, Mechanisms of membrane protein
G. Arselin, M. F. Giraud, A. Dautant, J. Vaillier, D. Brethes, B. Coulary-Salin, J.
Schaeffer, J. Vaillier, P. Prima, J. N. Sturgis, S. Scheuring, Rows of ATP synthase
e involved in the dimerization/oligomerization of the yeast ATP synthase complex in
V. Soubannier, J. Vaillier, P. Paumard, B. Coulary, J. Schaeffer, J. Velours, In the
absence of the first membrane-spanning segment of subunit 4 (b), the yeast ATP
synthase is functional but does not dimerize or oligomerize, J. Biol. Chem. 277
N. Buzhynskyy, P. Sens, V. Prima, J. N. Sturgis, S. Scheuring, Rows of ATP synthase
dimers in native mitochondrial inner membranes, Biophys. J. 93 (2007)
2870–2876.
N. V. Dudkina, J. Heinemeyer, W. Keesstra, E. J. Boerma, H. P. Braun, Structure of
dimeric ATP synthase from mitochondria: an angular association of monomers
induces the strong curvature of the inner membrane, FEBS Lett. 579 (2005)
5769–5772.
M. Strauss, G. Hofhaus, R. R. Schroder, W. Kuhlbrandt, Dimer ribbons of ATP synthase
shape the inner mitochondrial membrane, EMBO J. 28 (2009)
1154–1160.
C. Barnovod, F. Vogel, W. Neupert, A. S. Reichert, Mitochondrial membrane
potential is dependent on the oligomeric state of F1F0-ATP synthase supercom-
M. Prescott, N. C. Bush, P. Nagley, R. J. Devenish, Properties of yeast cells depleted of
subunit g of yeast mitochondrial F1F0-ATP synthase, a protein required for
315–323.
M. Paumard, J. Vaillier, B. Coulary, J. Schaeffer, V. Soubannier, D. M. Mueller, D.
Brethes, J. P. de Rago, J. Velours, The ATP synthase is involved in generating
H. S. Penefsky, Pi binding by the F1-ATPase of beef heart mitochondria and of the
2250–2252.
C. Forster, M. K. al-Shawi, R. L. Cross, H. S. S. Pre molecular genetic manipulation of subunits of
ATP synthase catalyzed by the chloroplast H+-ATPase, CrfF1, in proteoliposomes, J.
K. Krah, J. van Weel, Improved derivation of phosphate potentials at different
G. M. Boyle, X. Roucou, P. Nagley, R. J. Devenish, M. Prescott, Identification of subunit g of yeast mitochondrial F1F0-ATP synthase, a protein required for
substrate binding by the F1-ATPase from Escherichia coli or chloroplasts reconstituted
catalyzed by the H+-ATPases from Escherichia coli or chloroplasts reconstituted
continuous steady-state proton-translocating ATP hydrolysis catalyzed by F0.F1
2870–2876.
V. Kabaleeswaran, N. Puri, J. E. Walker, A. G. Leslie, D. M. Mueller, Novel features of
the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase, EMBO
R. J. Devenish, M. Prescott, X. Roucou, P. Nagley, Insights into ATP synthase
assembly and function through the molecular genetic manipulation of subunits of the
428–442.
Y. H. Ko, J. Hullihen, S. Hong, P. L. Pedersen, Mitochondrial F(0)F(1) ATP synthase.
Subunit regions on the F1 motor shielded by F(0), Functional significance, and
evidence for an involvement of the unique F(0) subunit F(6), J. Biol. Chem. 275
A. Dautant, J. Vaillier, P. Prima, J. N. Sturgis, S. Scheuring, Rows of ATP synthase
dimers in native mitochondrial inner membranes, Biophys. J. 93 (2007)
2870–2876.
N. V. Dudkina, J. Heinemeyer, W. Keesstra, E. J. Boerma, H. P. Braun, Structure of
dimeric ATP synthase from mitochondria: an angular association of monomers
induces the strong curvature of the inner membrane, FEBS Lett. 579 (2005)
5769–5772.
M. Strauss, G. Hofhaus, R. R. Schroder, W. Kuhlbrandt, Dimer ribbons of ATP synthase
shape the inner mitochondrial membrane, EMBO J. 28 (2009)
1154–1160.
C. Barnovod, F. Vogel, W. Neupert, A. S. Reichert, Mitochondrial membrane
potential is dependent on the oligomeric state of F1F0-ATP synthase supercom-
M. Prescott, N. C. Bush, P. Nagley, R. J. Devenish, Properties of yeast cells depleted of
subunit g of yeast mitochondrial F1F0-ATP synthase, a protein required for
315–323.
P. Paumard, J. Vaillier, B. Coulary, J. Schaeffer, V. Soubannier, D. M. Mueller, D.
Brethes, J. P. de Rago, J. Velours, The ATP synthase is involved in generating
H. S. Penefsky, Pi binding by the F1-ATPase of beef heart mitochondria and of the
2250–2252.
C. Forster, M. K. al-Shawi, R. L. Cross, H. S. S. Pre molecular genetic manipulation of subunits of
ATP synthase catalyzed by the chloroplast H+-ATPase, CrfF1, in proteoliposomes, J.
K. Krah, J. van Weel, Improved derivation of phosphate potentials at different
G. M. Boyle, X. Roucou, P. Nagley, R. J. Devenish, M. Prescott, Identification of subunit g of yeast mitochondrial F1F0-ATP synthase, a protein required for
substrate binding by the F1-ATPase from Escherichia coli or chloroplasts reconstituted
catalyzed by the H+-ATPases from Escherichia coli or chloroplasts reconstituted
continuous steady-state proton-translocating ATP hydrolysis catalyzed by F0.F1
2870–2876.
H. S. Penefsky, Pi binding by the F1-ATPase of beef heart mitochondria and of the
2250–2252.
C. Forster, M. K. al-Shawi, R. L. Cross, H. S. S. Pre molecular genetic manipulation of subunits of
ATP synthase catalyzed by the chloroplast H+-ATPase, CrfF1, in proteoliposomes, J.
K. Krah, J. van Weel, Improved derivation of phosphate potentials at different
G. M. Boyle, X. Roucou, P. Nagley, R. J. Devenish, M. Prescott, Identification of subunit g of yeast mitochondrial F1F0-ATP synthase, a protein required for
substrate binding by the F1-ATPase from Escherichia coli or chloroplasts reconstituted
catalyzed by the H+-ATPases from Escherichia coli or chloroplasts reconstituted
continuous steady-state proton-translocating ATP hydrolysis catalyzed by F0.F1
2870–2876.
Table S1
Subunits of MF_0F_1 from *Saccharomyces cerevisiae* and calculation of absorption coefficients.

<table>
<thead>
<tr>
<th>gene</th>
<th>subunit</th>
<th>protein ID</th>
<th>stoichiometry</th>
<th>number of amino acid</th>
<th>(\varepsilon_{280\text{nm}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP1</td>
<td>alpha</td>
<td>P07251</td>
<td>3</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>ATP2</td>
<td>beta</td>
<td>P00830</td>
<td>3</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>ATP3</td>
<td>gamma</td>
<td>P38077</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>ATP4</td>
<td>4 (b)(^d)</td>
<td>P05626</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>ATP5</td>
<td>5 (OSCP)(^c)</td>
<td>P09457</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ATP6</td>
<td>a (6)(^d)</td>
<td>P00854</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>ATP7</td>
<td>d</td>
<td>P30902</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>ATP8</td>
<td>8</td>
<td>P00856</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ATP9</td>
<td>9</td>
<td>P61829</td>
<td>10</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ATP14</td>
<td>H (h)(^c)</td>
<td>Q12349</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ATP15</td>
<td>epsilon</td>
<td>P21306</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ATP16</td>
<td>delta</td>
<td>Q12165</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ATP17</td>
<td>f</td>
<td>Q06405</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>ATP18</td>
<td>J (i)(^c) (i/j)(^d)</td>
<td>P81450</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>ATP19</td>
<td>K (k)(^c)(^d)*</td>
<td>P81451</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ATP20</td>
<td>g</td>
<td>Q12233</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>ATP21</td>
<td>e</td>
<td>P81449</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

\(\varepsilon_{280\text{nm}} = \) 151550 M\(^{-1}\)cm\(^{-1}\)
\(\varepsilon_{280\text{nm}} = \) 292290 M\(^{-1}\)cm\(^{-1}\)
\(\varepsilon_{280\text{nm}} = \) 294850 M\(^{-1}\)cm\(^{-1}\)

\(a\) Nomenclature from Uniprot database
\(b\) Identifier from Uniprot database
\(c\) Nomenclature from [50].
\(d\) Nomenclature from [52].
\(e\) in the mature subunits
\(f\) Calculated according to [39] with \(\varepsilon(\text{Trp})=5690 \text{ M}^{-1}\text{cm}^{-1} \), \(\varepsilon(\text{Tyr})=1280 \text{ M}^{-1}\text{cm}^{-1} \) and \(\varepsilon(\text{Cys})=60 \text{ M}^{-1}\text{cm}^{-1} \)
\(*\) not detected in our preparation
\(**\) stoichiometry determined by HPLC-electrospray mass spectrometry

MF_0F_1 \(\alpha_3\beta_3\gamma5\delta\varepsilon \)
MF_0F_1 \(** \alpha_3\beta_3\gamma\delta\varepsilon \ 45\text{ad89}1\text{d}0\text{Hf}J\text{ge} \)
MF_0F_1 \(\alpha_3\beta_3\gamma\delta\varepsilon \ 45\text{ad89}1\text{d}0\text{Hf}J\text{Kge} \)
Table S2
Reaction conditions inside and outside the protepliposome during the acid-base transition for measurement of ATP synthesis. *This phosphate concentration refers to the data shown in Figs. 3, 4 and 5. For measuring the K_M-values of phosphate, the phosphate concentration in the acidic medium (F1) and the basic medium was varied between 0.1 and 15 mM as indicated in Fig. 6.

<table>
<thead>
<tr>
<th>Reaction condition</th>
<th>in</th>
<th>out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Succinate (mM)</td>
<td>18</td>
<td>1.8</td>
</tr>
<tr>
<td>Tricine (mM)</td>
<td>1.7</td>
<td>220</td>
</tr>
<tr>
<td>K^+ (mM)</td>
<td>0.6</td>
<td>106</td>
</tr>
<tr>
<td>Na^+ (mM)</td>
<td>32-53</td>
<td>13-78</td>
</tr>
<tr>
<td>Mg^{2+} (mM)</td>
<td>3.6</td>
<td>3.9</td>
</tr>
<tr>
<td>Phosphate* (mM)</td>
<td>8.7</td>
<td>9.9</td>
</tr>
<tr>
<td>Saccharose (mM)</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>ADP (µM)</td>
<td>348</td>
<td>387</td>
</tr>
<tr>
<td>Valinomycin (µM)</td>
<td>17</td>
<td>1.7</td>
</tr>
<tr>
<td>pH</td>
<td>4.8-6.8</td>
<td>7.2-8.6</td>
</tr>
</tbody>
</table>

Table S3
Dissociation constants of phosphoric acid. In the pH-range between pH 7.0 and pH 8.6 only the second reaction is relevant and K_2 has been corrected for the ionic strength of the reaction medium (Krab & van Wezel, 1992). pK(corr) = pK+a√I+bI, a = -1.52, b = 1.96 and I = 0.14 M

<table>
<thead>
<tr>
<th>Reaction</th>
<th>I = 0 M</th>
<th>I = 0.14 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_3PO_4 ⇌ H_2PO_4+H^+</td>
<td>K_1 = 7.52⋅10^{-3}</td>
<td></td>
</tr>
<tr>
<td>H_2PO_4^+ ⇌ HPO_4^{2+}+H^+</td>
<td>K_2 = 6.23⋅10^{-8}</td>
<td>K_2(corr) = 1.2⋅10^{-7}</td>
</tr>
<tr>
<td>HPO_4^{2-} ⇌ PO_4^{3-}+H^+</td>
<td>K_3 = 4.37⋅10^{-13}</td>
<td></td>
</tr>
</tbody>
</table>
Fig. S1. Correction of inactivation of MF₀F₁ during incubation in the acidic medium. Top: The rate of ATP synthesis was measured as a function of incubation time at pH_{in} = 5.2 (circles) and at pH_{in} = 4.8 (squares) (at Δϕ = 133 mV and pH_{out} = 8.0). At pH 5.2 the rate of ATP synthesis does not depend on incubation time, at pH 4.8 the rate decreases. Bottom: The following initial rates were measured: v₁ at pH_{in} = 4.8 with denaturation, v₂ at pH_{in} = 5.2 where no denaturation occurs and v₃ at pH_{in} = 5.2 after 2 min preincubation at pH_{in} = 4.8. The ratio \(\frac{v₂}{v₃} \) is the correction factor for the rate v₁.